A -- simple math problem
Time Limit:2s Memory Limit:128MByte
Submissions:1599Solved:270
SAMPLE INPUT
5
20
1314
SAMPLE OUTPUT
5
21
1317
SOLUTION
题目链接:
分析:
这个题解是官方写法,官方代码如下:
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 typedef long long ll; 7 const int mo=1e9+7; 8 int pow(int a,int b,int c){ int ret=1;for(;b;b>>=1,a=1LL*a*a%c)if(b&1)ret=1LL*ret*a%c;return ret;} 9 10 int p[10], q[10];11 12 int work(int n){13 int t = 0;14 for(int i = 0;i <= 9;i ++) if(n >= q[i]) t = i;15 return n + t;16 }17 18 int gr(){19 return (rand() << 16) + rand();20 }21 22 int main(){23 p[0] = 1;24 int t = 1;25 for(int i = 1;i <= 9;i ++) p[i] = p[i - 1] * 10, q[i] = p[i] + 2 - i;26 int n;27 while(scanf("%d", &n) != EOF) printf("%d\n", work(n));28 return 0;29 }
这题我Wa了八发过了,和官方解法不同,怎么做呢?
一看就觉得肯定是规律题吧,打个表先?于是确实发现了一波规律,结论如下:
输入的这个数如果小于等于10,输出这个数
否则输入这个数加(位数减1)>=pow(10,t),其中t表示这个数的位数,大于输出结果为这个数+位数,否则输出这个数+(位数-1)
下面给出AC代码:(多组输入)
1 #include2 using namespace std; 3 int n; 4 int main() 5 { 6 while(cin>>n) 7 { 8 if(n>=0&&n<=10) 9 cout< < pow(10,t))20 cout< <
B -- Buildings
Time Limit:2s Memory Limit:128MByte
Submissions:682Solved:178
题目链接:
分析:
下面给出AC代码:
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 7 #define N 200010 8 9 int n, K, a[N], lg[N], f[20][N], g[20][N];10 11 int ask(int l, int r){12 int k = lg[r - l + 1];13 return max(f[k][l], f[k][r - (1 << k) + 1]) - min(g[k][l], g[k][r - (1 << k) + 1]);14 }15 16 int main(){17 // freopen("1.in", "r", stdin);18 scanf("%d%d", &n, &K);19 for(int i = 2;i <= n;i ++) if(i & (i - 1)) lg[i] = lg[i - 1]; else lg[i] = lg[i - 1] + 1;20 for(int i = 1;i <= n;i ++) scanf("%d", &a[i]), f[0][i] = g[0][i] = a[i];21 for(int i = 1;(1 << i) <= n;i ++){22 for(int j = 1;j + (1 << i) - 1 <= n;j ++){23 f[i][j] = max(f[i - 1][j], f[i - 1][j + (1 << (i - 1))]);24 g[i][j] = min(g[i - 1][j], g[i - 1][j + (1 << (i - 1))]);25 }26 }27 long long ans = 0;28 for(int i = 1;i <= n;i ++){29 int l = i, r = n, mid;30 while(l <= r){31 mid = (l + r) >> 1;32 if(ask(i, mid) <= K) l = mid + 1; else r = mid - 1;33 }34 ans += l - i;35 }36 cout << ans << endl;37 return 0;38 }
C -- Collecting apples
Time Limit:2s Memory Limit:128MByte
Submissions:24Solved:7
题目链接:
分析:
下面给出AC代码:
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 7 typedef int value_t; 8 typedef long long calc_t; 9 const int MaxN = 1 << 19; 10 const value_t mod_base = 119, mod_exp = 23; 11 const value_t mod_v = (mod_base << mod_exp) + 1; 12 const value_t primitive_root = 3; 13 int epsilon_num; 14 value_t eps[MaxN], inv_eps[MaxN], inv2, inv[MaxN]; 15 16 value_t dec(value_t x, value_t v) { x -= v; return x < 0 ? x + mod_v : x; } 17 value_t inc(value_t x, value_t v) { x += v; return x >= mod_v ? x - mod_v : x; } 18 value_t pow(value_t x, value_t p){ 19 value_t v = 1; 20 for(; p; p >>= 1, x = (calc_t)x * x % mod_v) 21 if(p & 1) v = (calc_t)x * v % mod_v; 22 return v; 23 } 24 25 void init_eps(int num){ 26 epsilon_num = num; 27 value_t base = pow(primitive_root, (mod_v - 1) / num); 28 value_t inv_base = pow(base, mod_v - 2); 29 eps[0] = inv_eps[0] = inv[0] = 1; 30 for(int i = 1; i < num; ++i) 31 inv[i] = pow(i, mod_v - 2); 32 for(int i = 1; i < num; ++i){ 33 eps[i] = (calc_t)eps[i - 1] * base % mod_v; 34 inv_eps[i] = (calc_t)inv_eps[i - 1] * inv_base % mod_v; 35 } 36 } 37 38 void transform(int n, value_t *x, value_t *w = eps){ 39 for(int i = 0, j = 0; i != n; ++i){ 40 if(i > j) swap(x[i], x[j]); 41 for(int l = n >> 1; (j ^= l) < l; l >>= 1); 42 } 43 for(int i = 2; i <= n; i <<= 1){ 44 int m = i >> 1, t = epsilon_num / i; 45 for(int j = 0; j < n; j += i){ 46 for(int p = 0, q = 0; p != m; ++p, q += t){ 47 value_t z = (calc_t)x[j + m + p] * w[q] % mod_v; 48 x[j + m + p] = dec(x[j + p], z); 49 x[j + p] = inc(x[j + p], z); 50 } 51 } 52 } 53 } 54 55 void inverse_transform(int n, value_t *x){ 56 transform(n, x, inv_eps); 57 value_t inv = pow(n, mod_v - 2); 58 for(int i = 0; i != n; ++i) 59 x[i] = (calc_t)x[i] * inv % mod_v; 60 } 61 62 void polynomial_inverse(int n, value_t *A, value_t *B){ 63 static value_t T[MaxN]; 64 if(n == 1){ 65 B[0] = pow(A[0], mod_v - 2); 66 return; 67 } 68 int half = (n + 1) >> 1; 69 polynomial_inverse(half, A, B); 70 int p = 1; 71 for(; p < n << 1; p <<= 1); 72 fill(B + half, B + p, 0); 73 transform(p, B); 74 copy(A, A + n, T); 75 fill(T + n, T + p, 0); 76 transform(p, T); 77 for(int i = 0; i != p; ++i) 78 B[i] = (calc_t)B[i] * dec(2, (calc_t)T[i] * B[i] % mod_v) % mod_v; 79 inverse_transform(p, B); 80 } 81 82 void polynomial_logarithm(int n, value_t *A, value_t *B){ 83 static value_t T[MaxN]; 84 int p = 1; 85 for(; p < n << 1; p <<= 1); 86 polynomial_inverse(n, A, T); 87 fill(T + n, T + p, 0); 88 transform(p, T); 89 copy(A, A + n, B); 90 for(int i = 0; i < n - 1; ++i) 91 B[i] = (calc_t)B[i + 1] * (i + 1) % mod_v; 92 fill(B + n - 1, B + p, 0); 93 transform(p, B); 94 for(int i = 0; i != p; ++i) 95 B[i] = (calc_t)B[i] * T[i] % mod_v; 96 inverse_transform(p, B); 97 for(int i = n - 1; i; --i) 98 B[i] = (calc_t)B[i - 1] * inv[i] % mod_v; 99 B[0] = 0;100 }101 102 void polynomial_exponent(int n, value_t *A, value_t *B)103 {104 static value_t T[MaxN];105 if(n == 1){106 B[0] = 1;107 return;108 }109 int p = 1; 110 for(; p < n << 1; p <<= 1);111 int half = (n + 1) >> 1;112 polynomial_exponent(half, A, B);113 fill(B + half, B + p, 0);114 polynomial_logarithm(n, B, T);115 for(int i = 0; i != n; ++i)116 T[i] = dec(A[i], T[i]);117 T[0] = inc(T[0], 1);118 transform(p, T);119 transform(p, B);120 for(int i = 0; i != p; ++i)121 B[i] = (calc_t)B[i] * T[i] % mod_v;122 inverse_transform(p, B);123 }124 125 value_t tmp[MaxN];126 value_t A[MaxN], B[MaxN], C[MaxN], T[MaxN];127 128 int main(){129 // freopen("1.in", "r", stdin);130 // freopen("1.out", "w", stdout);131 int n, m, nn, xx, yy;132 scanf("%d%d", &nn, &n);133 for(int i = 1;i <= n;i ++) tmp[i] = 0;134 for(int i = 1;i <= nn;i ++) scanf("%d%d", &xx, &yy), tmp[yy] += xx;135 inv2 = mod_v - mod_v / 2;136 int p = 1;137 for(; p < (n + 5) << 1; p <<= 1);138 init_eps(p);139 for(int j = 1;j <= n;j ++){140 for(int i = 1;i * j <= n;i ++)141 if(j & 1) A[i * j] = (A[i * j] + 1LL * inv[j] * tmp[i]) % mod_v;142 else A[i * j] = ((A[i * j] - 1LL * inv[j] * tmp[i]) % mod_v + mod_v) % mod_v;143 }144 polynomial_exponent(n + 5, A, B);145 for(int i = 1; i <= n;i ++) printf("%d\n", (B[i] + mod_v) % mod_v);146 return 0;147 }
D -- Delivering parcels
Time Limit:2s Memory Limit:128MByte
Submissions:114Solved:16
题目链接:
分析:
下面给出AC代码:
1 #include2 #include 3 #include 4 #include 5 #include 6 #include 7 #include 8 #include 9 #include 10 #include 11 #include
E -- Expected value of the expression
Time Limit:2s Memory Limit:128MByte
Submissions:119Solved:56
题目链接:
分析:
下面给出AC代码:
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 7 char op[1005][3]; 8 double f[2][1005], p[1005]; 9 int a[1005];10 int n;11 12 int main(){13 scanf("%d", &n);14 n ++;15 for(int i = 1;i <= n;i ++) scanf("%d", &a[i]);16 for(int i = 2;i <= n;i ++) scanf("%s", op[i]);17 for(int i = 2;i <= n;i ++) scanf("%lf", &p[i]);18 double ans = 0;19 for(int j = 0;j < 20;j ++){20 for(int i = 1;i <= n;i ++){21 int v = (a[i] >> j) & 1;22 f[0][i] = f[1][i] = 0.0;23 if(i == 1){24 f[v][1] = 1;25 f[v ^ 1][1] = 0;26 }else{27 if(op[i][0] == '&'){28 f[0][i] += f[0][i - 1] * p[i];29 f[1][i] += f[1][i - 1] * p[i];30 f[0 & v][i] += f[0][i - 1] * (1 - p[i]);31 f[1 & v][i] += f[1][i - 1] * (1 - p[i]);32 }33 if(op[i][0] == '|'){34 f[0][i] += f[0][i - 1] * p[i];35 f[1][i] += f[1][i - 1] * p[i];36 f[0 | v][i] += f[0][i - 1] * (1 - p[i]);37 f[1 | v][i] += f[1][i - 1] * (1 - p[i]);38 }39 if(op[i][0] == '^'){40 f[0][i] += f[0][i - 1] * p[i];41 f[1][i] += f[1][i - 1] * p[i];42 f[0 ^ v][i] += f[0][i - 1] * (1 - p[i]);43 f[1 ^ v][i] += f[1][i - 1] * (1 - p[i]);44 }45 }46 }47 ans += f[1][n] * (double)(1 << j);48 }49 printf("%.6lf\n", ans);50 return 0;51 }